Efficacy of Different Insecticides on Biology of Fall Armyworm (Spodoptera frugiperda J.E. Smith Lepidoptera: Noctuidae)

Muhammad Hassan Khan, Muhammad Arshad, Asad Aslam, Muhammad Saqib, Rashad Rasool Khan

Abstract


Maize is considered an important cereal crop after wheat and rice and is grown in all provinces of the country. Many biotic and abiotic factors affect the yield of maize. Among the biotic factors fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) is a key pest of maize crop all over the world. Laboratory bioassay was carried out by using five different insecticides against FAW. Two different lethal concentrations LC10 and LC20 were used against 3rd larval instar of FAW. The study was carried out under Completely Randomized Design (CRD) with three replications. The data regarding mortality were recorded after 24 hours of application until start of pupal stage and were analyzed by using Statistix 8.1 software at 0.05% level of significance while the Tukey’s HSD test was used for comparison of treatments means. The results showed that chlorantraniliprole was extremely potent against 3rd instar larvae. Spinetoram and chlorpyrifos, on the other hand, require a minimum concentration 0.025,0.0003, 0.0083 ppm and 0.039, 0.0046, 0.0012 ppm to kill 50, 20 and 10% of the population, respectively. Pyriproxyfen proved the least effective insecticides and required more quantity of insecticide to kill 3rd instar larvae.

Keywords


Fall armyworm; Spodoptera frugiperda; Lethal concentration; Biotic factors

Full Text:

PDF

References


Ali, A., A. Beshir Issa and D.B. Rahut. 2020. Adoption and impact of the maize hybrid on the livelihood of the maize growers: Some policy insights from Pakistan. Scientifica. 2020.

Assefa, F. and D. Ayalew. 2019. Status and control measures of fall armyworm (Spodoptera frugiperda) infestations in maize fields in Ethiopia: A review. Cogent Food & Agriculture. 5:1641902.

Bharadwaj, G., D. Mutkule, B. Thakre and A. Jadhav. 2020. Bio-efficacy of different insecticides against fall armyworm, Spodoptera frugiperda (JE Smith) on Maize. Journal of pharmacognosy and phytochemistry. 9:603-607.

Carvalho, R.A., C. Omoto, L.M. Field, M.S. Williamson and C. Bass. 2013. Investigating the molecular mechanisms of organophosphate and pyrethroid resistance in the fall armyworm Spodoptera frugiperda. PLoS One. 8:e62268.

Cordova, D., E. Benner, M. Sacher, J. Rauh, J. Sopa, G. Lahm, T. Selby, T. Stevenson, L. Flexner and S. Gutteridge. 2006. Anthranilic diamides: a new class of insecticides with a novel mode of action, ryanodine receptor activation. Pesticide Biochemistry and Physiology. 84:196-214.

De Groote, H., S.C. Kimenju, B. Munyua, S. Palmas, M. Kassie and A. Bruce. 2020. Spread and impact of fall armyworm (Spodoptera frugiperda JE Smith) in maize production areas of Kenya. Agriculture, ecosystems & environment. 292:106804.

Deshmukh, S., H. Pavithra, C. Kalleshwaraswamy, B. Shivanna, M. Maruthi and D. Mota-Sanchez. 2020. Field efficacy of insecticides for management of invasive fall armyworm, Spodoptera frugiperda (JE Smith)(Lepidoptera: Noctuidae) on maize in India. Florida Entomologist. 103:221-227.

Desneux, N., A. Decourtye and J.-M. Delpuech. 2007. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 52:81-106.

El-Sheikh, E.-S.A. 2015. Comparative toxicity and sublethal effects of emamectin benzoate, lufenuron and spinosad on Spodoptera littoralis Boisd. (Lepidoptera: Noctuidae). Crop Protection. 67:228-234.

Gilal, A.A., L. Bashir, M. Faheem, A. Rajput, J.A. Soomro, S. Kunbhar and J. Sahito. 2020. First record of invasive fall armyworm (Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) in corn fields of Sindh, Pakistan. Pak J Agric Res. 33:247-252.

Gop. 2020-21. Pakistan Economic Survey 2020-21. Government of Pakistan Finance Division.

Hardke, J.T., J.H. Temple, B.R. Leonard and R.E. Jackson. 2011. Laboratory toxicity and field efficacy of selected insecticides against fall armyworm (Lepidoptera: Noctuidae). Florida Entomologist.272-278.

Hina, M., M.Z. Majeed, M. Afzal, M. Arshad, A. Mehmood, and M. Qasim. 2024. The efficacy of selected synthetic insecticide formulations against fall armyworm Spodoptera frugiperda (JE Smith) under laboratory, semi-field and field conditions. Pakistan Journal of Zoology. 56:147-155.

Huang, Y., Y. Dong, W. Huang, B. Ren, Q. Deng, Y. Shi, J. Bai, Y. Ren, Y. Geng and H. Ma. 2020. Overwintering distribution of fall armyworm (Spodoptera frugiperda) in Yunnan, China, and influencing environmental factors. Insects. 11:805.

Kasoma, C., H. Shimelis, M.D. Laing, and B. Mekonnen. 2022. Fall armyworm infestation and development: screening tropical maize genotypes for resistance in Zambia. Insects 13:1020.

Kenis, M., G. Benelli, A. Biondi, P.-A. Calatayud, R. Day, N. Desneux, R.D. Harrison, D. Kriticos, I. Rwomushana and J. Van Den Berg. 2022. Invasiveness, biology, ecology, and management of the fall armyworm, Spodoptera frugiperda. Entomologia Generalis.

Kumar, R.M., B.-G. Gadratagi, V. Paramesh, P. Kumar, Y. Madivalar, N. Narayanappa and F. Ullah. 2022. Sustainable management of invasive fall armyworm, Spodoptera frugiperda. Agronomy. 12:2150.

Lahm, G.P., D. Cordova and J.D. Barry. 2009. New and selective ryanodine receptor activators for insect control. Bioorg. Med. Chem. 17:4127-4133.

Mondal, B., D. Chettri, M. Bhattacharya, S. Chatterjee and A.K. Mukhopadhyay. 2020. Bioefficacy of coragen 20sc (chlorantraniliprole 18.5% sc w/w) against the major lepidopteran arthropod complex in green gram (Vigna radiata). Pesticide Res. J. 32:140-147.

Qiu, L., Q. Liu, X. Yang, X. Huang, R. Guan, B. Liu, Y. He and Z. Zhan. 2020. Feeding and oviposition preference and fitness of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), on rice and maize. Acta Entomologica Sinica. 63:604-612.

Reddy, V.R. and F. Jabeen. 2016. Narrow sense heritability, correlation and path analysis in maize (Zea mays L.). SABRAO J. Breed. Genet. 48:120-126.

Salem, S.A.R, H.F. Dahi, F.A. Abdel-Galil, and M. A. Mahmoud. 2023. Efficacy of common synthetic insecticides for management of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) in Egypt. Egyptian Academic Journal of Biological Sciences, F. Toxicology & Pest Control 15:157-170.

Seth, R., J. Kaur, D. Rao and S. Reynolds. 2004. Effects of larval exposure to sublethal concentrations of the ecdysteroid agonists RH-5849 and tebufenozide (RH-5992) on male reproductive physiology in Spodoptera litura. J. Insect Physiol. 50:505-517.

Sisay, B, T. Tefera, M. Wakgari, G. Ayalew, and E. Mendesil. 2019. The efficacy of selected synthetic insecticides and botanicals against fall armyworm, Spodoptera frugiperda, in maize. Insects 10: 45.

Tambo, J.A., R.K. Day, J. Lamontagne-Godwin, S. Silvestri, P.K. Beseh, B. Oppong-Mensah, N.A. Phiri and M. Matimelo. 2020. Tackling fall armyworm (Spodoptera frugiperda) outbreak in Africa: an analysis of farmers’ control actions. Intel. J. Pest Manag. 66:298-310.

Tukaram, A.H., A.C. Hosamani, R. Naveena, and G.B. Santoshagowda. 2014. Bioassay of flubendiamide on Spodoptera litura (Fab.) population collected from different host crops. International Journal of Science, Environment and Technology 3:2225-2230.

Wang, D., Y.-M. Wang, H.-Y. Liu, Z. Xin and M. Xue. 2013. Lethal and sublethal effects of spinosad on Spodoptera exigua (Lepidoptera: Noctuidae). J. Econo. Entomol. 106:1825-1831.

Zarate, N., O. Diaz, A.M. Martinez, J.I. Figueroa, M.I. Schneider, G. Smagghe, E. Viñuela, F. Budia and S. Pineda. 2011. Lethal and sublethal effects of methoxyfenozide on the development, survival and reproduction of the fall armyworm, Spodoptera frugiperda (JE Smith)(Lepidoptera: Noctuidae). Neotropical Entomol. 40:129-137.

Zhou, Y.-M., W. Xie, J.-Q. Ye, T. Zhang, D.-Y. Li, J.-R. Zhi and X. Zou. 2020. New potential strains for controlling Spodoptera frugiperda in China: Cordyceps cateniannulata and Metarhizium rileyi. BioControl. 65:663-672.




DOI: https://doi.org/10.33687/planthealth.03.02.4945

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.